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Magic numbers in vertically coupled quantum dots
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Abstract. A coupled quantum dot system has been studied by numerical diagonalization of the Hamilto-
nian. Discontinuous ground-state transitions induced by an external magnetic field have been predicted.
Series of magic numbers of angular momentum which minimize the ground-state electron-electron inter-
action energy have been discovered. Theoretical explanations derived from the first principles have been
formulated.

PACS. 73.20.Dx Electron states in low-dimensional structures (superlattices, quantum well structures and
multilayers) – 73.20.Mf Collective excitations (including plasmons and other charge-density excitations) –
73.40.Kp III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions

In recent years, advances in nanofabrication technol-
ogy have allowed the creation of artificial semiconductor
structures containing only a small number of electrons,
called quantum dots [1]. Recent experimental work has
explored phenomena such as quantum dot charging [2],
transport through quantum dots [3,4], and far-infrared
absorption [5]. Specifically, the single-electron capacitance
spectroscopy allows the direct measurement of energies
of quantum levels of the dot as a function of magnetic
field [2]. Related theoretical studies have led to interesting
predictions of the existence of magic angular momentum
for interacting electrons in the dots [6–11]. In fact they
are the possible angular momenta only where the ground
state can occur if a dot is placed in a magnetic field. Tran-
sitions from one magic value to another can be induced by
changing the magnetic field. Recently these predictions
have been confirmed unambiguously by experiments for
dots with N = 2, 3 [12]. In this paper, we studied the cou-
pled quantum dots by exact numerical diagonalization and
predicted novel ground-state transitions. The model has
been previously studied partly (polarized states) [13], by
using the perturbative method and the unphysical inverse-
square potential, β/r2, for particle-particle interactions.
In this work, we consider all the spin configurations and
the particle-particle interaction used in the calculation is
the unscreened Coulomb potential. The introduction of
2D harmonic oscillator transformation bracket allows us
to evaluate the H matrix analytically. As we will show
in the following that the appearance of magic numbers in
coupled dots can be understood as the results of symmetry
constraints.
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Fig. 1. Schematic configuration of two coupled quantum dots.

Consider a system of two adjacent, collinear quantum
dots as schematically shown in Figure 1. We assume that
each quantum dot contains only two electrons. Such a
system is the simplest including both intradot and in-
terdot interactions. The confinement potential, as is ap-
propriate for the experiment, is taken to be parabolic,
1
2m
∗ω2

0r
2 [7–12], where m∗ is the effective electron mass,

ω0 is a strength parameter for the confinement potential.
The external magnetic field is assumed to be along the −z
direction. The electron-electron interaction is taken to be
the unscreened Coulomb potential. The electron tunnel-
ings between two dots are assumed to be negligible. The
Hamiltonian is given by
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where Vintra and Vinter are respectively the intradot and
interdot electron-electron interactions,
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With symmetric gauge A = B× r/2, equation (1) can be
rewritten into

H =
4∑
i=1

[ p2
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]
+ Vintra + Vinter +

ωc

2
LT + g∗µBBSz (4)

where ωB =
√
ω2

0 + ω2
c/4, ωc = eB/m∗ is the cyclotron

frequency, LT is the total orbital angular momentum (in-
cluding the center-of-mass’ and the relative) in the z direc-
tion, g∗ is the effective Lande factor, Sz is the z component
of the total spin.

Significant simplification of equation (4) can be
achieved by introducing a set of center-of-mass and canon-
ical relative coordinates: Rcm =

∑4
i=1 ri/4, ξ1 = (r1 −

r2)/2, ξ2 = (r3 − r4)/2, ξ3 = (r3 + r4 − r1 − r2)/2. Equa-
tion (4) can then be divided into two independent parts

H = Hcm +Hr (5)

with
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Hr = H0 + Vintra + Vinter (7)
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where Hcm describes the center-of-mass motion, Hr de-
scribes the relative motion, M = 4m∗ is the total mass,
µ1 = µ2 = m∗/2, µ3 = m∗, Lcm and L are the angular
momentum operators associated with the center-of-mass
and relative motions respectively. The eigensolutions of
Hcm are obviously the ordinary 2D harmonic oscillator
functions.

To obtain the eigenfunctions and eigenenergies as-
sociated with the relative motion, we diagonalized Hr

in a model space spanned by the translationally in-
variant 2D harmonic product basis states {Φ[k] ≡
φn1l1(ξ1)φn2l2(ξ2)φn3l3(ξ3)}, where [k] denotes the whole
set of quantum numbers (n1, l1, n2, l2, n3, l3) in brevity.
The angular quantum number l1 = odd if the spin of par-
ticle cluster (e1, e2) S12 = 1, and l1 = even if S12 = 0; sim-
ilar restrictions apply for l2 such that the full wavefunction
is properly antisymmetrized. The matrix elements of Hr

Fig. 2. Projection of the equilibrium configuration of the sys-
tem on to an x−y plane. The dotted lines constitute a square.
Particle pairs (e1, e2) and (e3, e4) are on a different x−y plane.

are then given by the following expressions,

〈Φ[k]|H0|Φ[k′]〉 =
{
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with
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′
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where Rnl is the radial part of 2D harmonic oscillator
function, A[k],[k′] is the transformation bracket of 2D har-
monic product states with two different sets of relative
coordinates for four-body systems, which allows us to
reduce the otherwise multi-integral into single-integral.
Nonvanishing A[k],[k′] occurs only when both the states
Φ[k](ξ1, ξ2, ξ3) and Φ[k′](ξ

′
1, ξ
′
2, ξ
′
3) have the same eigenen-

ergy and eigen angular momentum. Analytical expression
for A[k],[k′] has already been derived in reference [14].
The set of canonical coordinates {ξ′1, ξ

′
2, ξ
′
3} are defined by

ξ′1 = (r1−r3)/2, ξ′2 = (r2−r4)/2, ξ′3 = (r2+r4−r1−r3)/2.
In our practical diagonalizations, basis states from six
Landau levels were included.

Unlike a classical mechanical system, the behaviour
of a quantum system is governed both by the dynami-
cal properties (particle masses, details of the interactions)
and by the exchange symmetry of the constituents. As we
will show in the following, the later is more important a
factor responsible for the phenomena we are focusing on.
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(a)

(b)

Fig. 3. Density distribution of the lowest state with (a) magic
L; (b) non-magic L as a function of (x1, y2). The two black
dots are positions of particles e3 and e4 with the optimized
separation. We set (x2, y2) = (−x1,−y1) such that the center-
of-mass of the global system is fixed at the center.

Therefore, before going to the details of the numerical re-
sults, let us first investigate the constraints that antisym-
metrization imposes on the geometrical configuration of a
strongly correlated system. The equilibrium configuration
of the present system is schematically shown in Figure 2.
This is a square with the particles at the vertexes when
their positions are vertically projected onto the same x−y
plane. Actually the particle pairs (e1, e2) and (e3, e4) are
on a different x− y plane (see Fig. 1). Hence we call this
configuration a pseudo-square (PS) hereafter. In quantum
mechanics, a system can not possess a rigid geometrical
shape as its classical correspondent does, instead, we have
a distribution of the probability density. However, in or-
der to minimize the interaction energy, the distribution of
the wavefunction of the ground state should be smoothly
(without nodal lines) peaked at the PS. We notice that
with the PS configuration a rotation of 180◦ is equivalent
to the particle exchange 1 ↔ 2, and 3 ↔ 4. Let ΨL be
the spatial part of the wavefunction with angular momen-
tum L, ΨL(PS) be the probability amplitude for the four
particles to form a PS. Then this can be expressed as

R180◦ΨL(PS) = P(12)(34)ΨL(PS). (15)

When acting on the wavefunction, the operator R180◦ pro-
duces a factor of (−1)L, while P(12)(34) produces a factor

of (−1)S12+S34 such that the full wavefunction (a product
of the spatial part and the spin part) is antisymmetric.

Fig. 4. The lowest state of a L as a function of the magnetic
field, a). S12 = S34 = 1, b). S12 6= S34, c). S12 = S34 =
0. The solid lines are associated with magic L, the dashed
lines are associated with non-magic L. The numbers in the
figures label the angular momentum of the state. Parameters
are taken appropriate for GaAs. ~ω0 = 3.6 meV, d = 2l0 (l0 ≡√
~ω0/m∗).

Hence equation (15) can be rewritten into[
(−1)L − (−1)S12+S34

]
ΨL(PS) = 0. (16)

This implies that the most favourable PS configuration
is completely prohibited (i.e., ΨL(PS) = 0) by symme-
tries unless L takes the magic values fullfilling (−1)L =
(−1)S12+S34 , i.e., L = even if S12 = S34, and L = odd if
S12 6= S34 (S12, S34 = 0, 1). (More generally speaking, it
is the pseudo-diamond (PD) that is prohibited, the PS is
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Fig. 5. The lowest energy of a spin configuration as a function
of the magnetic field: S12 = S34 = 1, solid curve; S12 6= S34,
dashed curve; S12 = S34 = 0, dotted curve.Sz = S12 + S34 in
all cases. Arrows point to the position where a ground-state
angular momentum and/or spin transition occurs.

a special case of which.) With this in mind, we presented
the numerical results as follows.

1. To see intuitively the effect of PS prohibition. We set
the positions of particle e3 and e4 to (x3, y3) = (a, 0) and
(x4, y4) = (−a, 0) respectively, where a is the optimized
value of particle separation. We further set (x1, y1) =
(−x2,−y2). Then the density function |ΨL|2 of the lowest
states are plotted as a function of (x1, y1) in Figures 3.
Figure 3a is a state with a magic L, Figure 3b is a state
with non-magic L. In Figure 3a the density function con-
centrates to the positions (0,±a), implying that the PS
configuration is strongly pursued to successfully minimize
the interaction energy, while in Figure 3b the y-axis is a
nodal line of the wavefunction preventing the four parti-
cles from forming a PD configuration. Since the curvature
of the wavefunction increases with the number of nodes,
the appearance of this nodal line is energetically quite un-
favorable. Consequently the state will be prevented from
becoming the ground-state (see below).

2. In Figures 4 we presented the energy of the lowest
state of an L as a function of the external magnetic field B
separately for each spin configuration. The terms of Ecm
and g∗µBBSz are not included here. It is the competi-
tion between the single particle energy and the interac-
tion energy that finally determines the total energy. The
existence of the Zeeman term ωcL/2 (negative) enables
states with larger L to be possibly even lower than those
with smaller L . As a result, the lowest state for a given
spin configuration occurs at larger L as the magnetic field
increases. However, the transition is strictly restricted to
between two magic numbers of L. States with non-magic
L lie much higher and are excluded from becoming the
lowest of the spin configuration due to the existence of
PS prohibition and the failure to minimize the interaction
energy.

Fig. 6. The same as Figures 4 except for d =∞.

In Figure 5, the lowest energy of a spin configura-
tion was presented as a function of the external magnetic
field. Unlike Figure 4, the spin-dependent term g∗µBBSz
has been included here (we always set Sz = S12 + S34),
which advantages the spin-polarized states. Consequently,
ground-state spin transitions S = 0→ 1→ 2 occur in the
range between B = 1 and 2 (Tesla). Over that region, the
magnetic field is strong enough to keep the system fully
polarized and the ground state runs only on the magic L’s
associated with the spin configuration S12 = S34 = 1.

3. It is interesting to compare the above results with
those when d→∞ and the two dots become independent
(see Figs. 6). In this case, the angular momentum of each
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single dot (L12 or L34) is a good quantum number. The
two-electron single dot system has been studied in great
detail by Merkt et al. [15]. As is required by the Pauli
principle, L12 = 2k+ 1 (k=0, 1, 2...) if S12 = 1 and L12 =
2k if S12 = 0. In Figure 6a and c where S12 = S34, the
possible lowest states occur only at those satisfying the
Pauli principle and L12 = L34, i.e., L = 2(2k + 1) for
S12 = S34 = 1 and L = 4k for S12 = S34 = 0. For
S12 = S34 = 1, the sequence L = 4k, which can become
the lowest state in coupled dots, fails to become the lowest
state in uncoupled dots. For S12 = S34 = 0, it is the
sequence L = 2(2k + 1) that fails to become the lowest
state in uncoupled dots. For S12 6= S34, it is not allowed
to have L12 = L34 and the possible lowest states are of
the same as those of coupled dots.

4. Of the aboved calculations, two extensions have been
done by assuming different sizes of the two dots and by
taking nonparabolic confinements. When the two dots are
different in size, the most favourable configuration of the
system is a PD, for which equation (15) continues to hold.
For nonparabolic dots the center-of-mass mode of motion
is coupled with the relative motion. We found that the
qualitative feature is of the same as discussed above since
the symmetry constraints are of the same.

To summarize, we have numerically diagonalized the
Hamiltonian of two coupled quantum dots and analyzed
the low-lying states systematically. Similar to a single
dot, the ground state of a two-coupled-dot system varies
discontinuously in a magnetic field, showing a selection
rule for the total angular momentum L. The interdot cor-
relation leads to some extra sequences of possible ground
states which do not exist in uncoupled dots. There is a
reminiscence of the ν = 1/2 fractional quantum Hall effect
in double layers of electrons in strong magnetic field,
induced by interlayer correlations. For the appearance of
magic numbers in coupled quantum dots, we have argued

that this be due to the particle-particle interaction and
symmetry constraints solely and have very little to do with
the dynamical properties. With our theory, all the magic L
can be derived algebraically and simply. Since now several
experimental methods have been developed to probe the
ground state energy of quantum dots, what we have found
here may be put to test in experiments in the near future.
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